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Abstract

Estimating heterogeneous conduction velocities (CVs)
in the atria is essential for understanding arrhythmia
mechanisms but remains challenging due to sparse and
noisy clinical data. FiberNet, a physics-informed neural
network-based method, offers a data-efficient approach
to estimate direction-dependent CVs and fiber orientation
from local activation time maps.

We present a synthetic 2D benchmark setup, physio-
logically motivated by atrial tissue properties, specifically
the preferential orientation of cardiomyocytes, as well as
region-specific CVs and anisotropy ratios. By systemat-
ically varying data quality and fiber complexity, we an-
alyzed FiberNet’s robustness and accuracy in estimating
anisotropic properties across heterogeneous tissue, ac-
counting for anatomical variability.

Performance was evaluated using error thresholds of
30◦ for fiber angle (α) and 0.1 m/s and 0.2 m/s for CV. For
uniform or sharply heterogeneous tissues, predictions were
within these thresholds for 86 % (α), 67 % (CV, 0.1 m/s),
and 79 % (CV, 0.2 m/s). Under Gaussian noise (σ = 1 m/s)
percentages decreased to 61 %, 24 %, and 44 %, respec-
tively. In regions with gradual fiber transitions, only 67 %
of α predictions remained below 30◦. These results high-
light conditions of reliable performance and opportunities
for targeted improvement to advance clinical impact.

1. Introduction

Conduction velocity (CV) reflects how fast electrical
signals travel through cardiac tissue. Due to the heart tis-
sue’s anisotropic structure, shaped by the preferential ori-
entation of cardiomyocytes, CV varies directionally and
spatially due to heterogeneity, influencing activation pat-
terns. Pathological remodeling can slow CV and pro-
mote conduction heterogeneity, contributing to the ar-
rhythmogenic substrate of atrial fibrillation [1]. Mapping
direction-dependent CV can thus improve mechanistic un-
derstanding and support personalized treatment strategies.

Gradient-based approaches estimate CV from spatial and
temporal differences in local activation time (LAT) mea-
surements obtained from electro-anatomical mapping [2].
However, the atria’s complex geometry, limited resolution
and noise inherent to these maps, compromise the accu-
rate reconstruction of anisotropic tissue properties. These
challenges have motivated the use of other modeling ap-
proaches. Among these methods, physics-informed neural
networks (PINNs) combine the flexibility of deep learn-
ing with physical constraints, offering a potential solu-
tion to infer conduction properties from sparse and noisy
LAT maps. Building on a PINN-based approach [3],
FiberNet [4] estimates spatially varying, anisotropic tissue
properties from LAT maps. Since then, it has been refined
to enhance accuracy and robustness [5].

In this study, we present a controlled, physiologically
inspired in-silico framework to evaluate CV estimation
method prediction accuracy and apply it to FiberNet.

2. Material and Methods

2.1. Propagation Model

Electrical activation in cardiac tissue can be modeled at
various levels of complexity [6]. When focusing on activa-
tion patterns rather than temporal voltage dynamics, sim-
plified models like the anisotropic eikonal equation can be
used [7]. This model describes the propagation of electri-
cal wavefronts while accounting for tissue anisotropy:√

∇ϕ(x)⊤D(x)∇ϕ(x) = 1 ∀x ∈ Ω ⊆ IR3, (1a)

ϕ(x) = ϕ0 ∀x ∈ Γ0 ⊂ Ω, (1b)

where for each location x in a domain Ω, the positive-
definite, symmetric tensor D(x) defines the conduction
properties, and ϕ(x) is the activation time of a cell in x,
for a propagating wave initiated in Γ0 at time ϕ0.

The atria are often modeled as a surface S ⊆ Ω, ig-
noring a propagation perpendicular to S. Given this as-
sumption, D(x) defines the direction-dependent conduc-
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tion properties of the cardiac tissue and can be written as

D(x) = CV2
∥(x)l(x)⊗ l(x)

+ CV2
⊥(x)t(x)⊗ t(x) ∀x ∈ S ⊆ Ω (2)

with

l(x) =

cos(α(x))sin(α(x))
0

 , t(x) =

− sin(α(x))
cos(α(x))

0

 , (3)

where l(x) and t(x) form an orthonormal system rep-
resenting the local preferential orientation of the cardio-
myocytes, corresponding to the longitudinal and transver-
sal directions. CV∥(x) and CV⊥(x) correspond to the
local conduction velocities in longitudinal and transversal
direction, while α(x) defines the fiber orientation angle.

2.2. FiberNet

We used the 2D version of FiberNet [4]. Although re-
cent work [5] introduced improvements in surface han-
dling and incorporated uncertainty quantification, the pre-
vious version was used due to the availability of the open-
source code. In the following, a concise overview of the
method is provided. For further details, we refer to [4].

FiberNet is a PINN framework for estimating cardiac
conduction properties from sparse LAT data. Given LAT
samples on a known surface, it predicts full LAT maps and
the underlying direction-dependent conduction features,
by incorporating the eikonal equation as a biophysical con-
straint into the learning process.

Formally, for a given surface geometry S with spatial
coordinates x ∈ S ⊆ IR3, we denote the LATs ϕi(xk),
where i=1, ..., N indexes the LAT maps and k=1, ..., Ni

the sampled points per map. FiberNet predicts the LAT
maps ϕ̂i(x) and the squared CV tensor D̂(x) defined by
ĈV∥(x), ĈV⊥(x), and α̂(x).

The architecture consists of separate neural networks for
LAT map predictions (5 hidden layers, 10 neurons each,
and weights θϕ) and another one for tissue property esti-
mation (5 hidden layers, 5 neurons each, and weights θD).
For training, we used 245 sample points, evenly distributed
across N LAT maps, to minimize the total loss function

L(θD, θϕ) = λdataLdata(θϕ) + λeikoLeiko(θD, θϕ)

+ λCVLCV(θD) + λαLα(θD) . (4)

The loss comprises four terms, each targeting a different
aspect of model performance: (i) Data loss Ldata: Penal-
izes discrepancies between predicted and reference LAT
values at sampling locations. (ii) Physics-informed loss
Leiko: Favors consistency with wave propagation dynam-
ics by penalizing deviations from the eikonal equation at
collocation points. (iii) Regularization losses LCV and Lα:

Promote piecewise smoothness in predicted CVs and fiber
angle, mitigating the ill-posedness of the inverse problem
by promoting physiologically plausible solutions. Relative
importance of these terms is controlled by the weight fac-
tors λdata =1, λeiko =10−2, λCV =10−5, and λα =10−9.

2.3. Benchmark Setups

We designed synthetic 2D test cases with atria-inspired
conduction and fiber patterns. While clinical data lack ex-
plicit ground truth, this setup offers a controlled environ-
ment for quantitative validation.

Each case is defined on a 2 × 2 cm2 tissue patch dis-
cretized into a 35× 35 grid, accounting for region-specific
anisotropic properties through spatially varying fiber ori-
entations and direction-dependent conduction velocities.
The setup includes both smoothly varying and abrupt tran-
sitions to reflect physiologically relevant heterogeneity.
Details of the individual test cases and assigned tissue
properties are summarized in Figure 1 and Table 1.

For each test case, we generated LAT maps by solving
the anisotropic eikonal equation using the Fast Iterative
Method [8], with pacing sites selected by Latin hypercube
sampling to diversify activation patterns.

AMh PM CT

RAsup AMr AA

BB AAFib AMhFib

Figure 1. 2D test cases based on atria-inspired tissue
patches, with region-specific conduction velocities (see Ta-
ble 1) and fiber orientations (black lines). AMh/r – atrial
myocardium with horizontal/rotated fibers; PM: pectinate
muscle; CT – crista terminalis; RAsup – superior right
atrium; AA – atrial appendage; BB – Bachmann’s bundle;
AAFib/AMhFib – AA/AMh with fibrotic core.
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Atrial regions CV∥ in m/s CV⊥ in m/s
Atrial myocardium 1.2465 0.5905
Atrial appendages 1.2467 0.5950
Crista terminalis 1.6839 0.5911
Pectinate muscles 1.7435 0.4612
Bachmann’s bundle 2.1511 0.6450
Fibrosis 0.2000 0.2000

Table 1. Region-specific conduction velocities in longitu-
dinal (CV∥) and transversal (CV⊥) preferential orientation
of the cardiomyocytes. Values from Nagel et al. [6].

To assess how noise and electrode sampling affect the
prediction of anisotropic tissue properties, we applied the
following perturbations to the LAT maps: (i) Gaussian
noise with standard deviations σ=1ms or 3ms to mimic
clinical measurement uncertainty. (ii) Outlier regions were
introduced to mimic localized clinical artifacts. We placed
four randomly located, non-overlapping clusters per LAT
map, with each containing 1 to 50 connected nodes as-
signed a single, random LAT value. (iii) Sampling density
was varied between −75% and +400% to evaluate the ef-
fect of data resolution on prediction accuracy.

The resulting data, sampled from one, three, or five LAT
maps, were then used as input for the predictions.

2.4. Results

Figure 2 shows the median absolute error (MdAE) for
CV∥, CV⊥, and α predictions for all tissue cases and se-
lected noise scenarios, taking 245 sample points from three
distinct LAT maps. Performance was best without noise,
yielding MdAEs of 0.13m/s (CV∥), 0.03m/s (CV⊥),
and 9 ◦ (α). Five LAT maps gave similar accuracy, while

using one increased errors by +0.14m/s, +0.19m/s, and
+15◦, respectively.

Focusing on three noise-free LAT maps, predictions
were reliable across a wide range of tissue configurations.
Error distributions across all configurations are shown in
Figure 3. α prediction was accurate in uniform pat-
terns, with △α30 =99%, i.e., 99 % of all nodes among
AMh, PM, and AMhFib had absolute error ≤ 30 ◦. Re-
gions with fiber transitions (CT, RAsup, AMr, AA, BB,
AAFib) led to higher MdAEs. While abrupt changes
were generally well captured (△α30 =99%) with high er-
ror mainly near the boundaries, performance dropped for
gradual fiber transitions (△α30 =69%). Similarly, CV
predictions were reliable in uniformly structured tissues,
with low MdAEs and narrow error distributions, as 89%
(90%) of nodes had AEs ≤ 0.1m/s (0.2m/s) (△CV0.1,
△CV0.2). In heterogeneously structured cases (PM, CT,
RAsup, AA/AMhFib), accuracy declined with complex-
ity. In RAsup, for instance, broader CV trends were
captured, but finer structures, such as pectinate muscles,
were less precisely resolved leading to △CV0.1 =30%
and △CV0.2 =48%.

Analyzing the model’s robustness to noise, sampling
density had only minor influence. Gaussian noise espe-
cially reduced CV prediction accuracy. (see Figure 3).
The impact was moderate at σ=1ms (mean over all
cases: △α30 =61%, △CV0.1 =24%, △CV0.2 =44%)
but severe at σ=3ms (△α30 =25%, △CV0.1 =2%,
△CV0.2 =5%). However, note that due to the patch size,
noise with σ=3ms corresponded to ≈ 10% noise in the
LAT maps. Outlier regions also notably reduced accuracy,
although this highly depended on the number of sample
points overlapping with these regions. Combined noise
and outlier effects overwhelmed the learning. Increas-
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Figure 2. Median absolute error (MdAE) of predicted anisotropic conduction properties - conduction velocities longitu-
dinal (CV∥) and transversal (CV⊥) to fiber orientation, and fiber angle (α) - based on three local activation time (LAT)
maps. Comparing prediction accuracy for the cases in Figure 1 (columns), when applying various noise settings to the LAT
maps (rows): (i) noise-free (NF), (ii) 400% increase or 75% reduction of sample points (ISP/RSP), (iii) Gaussian noise
with σ=1ms (G1) or 3ms (G3) on the LAT maps, (iv) outlier regions (OR), and (v) combinations of these perturbations.
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ing sampling density could not compensate for this effect,
while reducing it was beneficial.
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Figure 3. Distribution of absolute error (AE) in predicted
anisotropic conduction properties - conduction velocities
longitudinal (CV∥) and transversal (CV⊥) to fiber orien-
tation, and fiber angle (α) - based on three local activation
time (LAT) maps, noise-free (NF) or with Gaussian noise
with σ=1ms (G1), for the cases defined in Figure 1.

3. Discussion

We evaluated FiberNet’s ability to predict local tis-
sue properties under varying anatomical complexities and
noise levels. In line with the findings in [4], a single LAT
map proved insufficient. Multiple LAT maps from dis-
tinct pacing sites improved prediction accuracy by provid-
ing complementary information on conduction properties,
ameliorating the ill-posedness of the inverse problem.

FiberNet provided robust, region-specific CV predic-
tions, especially in uniform or abruptly changing fiber
orientations. While sharp transitions were well-captured,
boundary regions and gradual fiber transitions presented
higher errors. The model showed resilience to sparse sam-
pling, yet Gaussian noise significantly reduced accuracy,
particularly for CVs, possibly amplified by the small patch
size and limited LAT range.

Median fiber angle predictions remained clinically ac-
ceptable (≤ 30◦), but CV errors in heterogeneous settings

often exceeded 0.1 m/s, indicating a need for further opti-
mization. Targeted improvements should focus on enhanc-
ing noise robustness and refining performance in gradual
fiber transitions, possibly by employing alternative regu-
larization schemes. Future work will extend the framework
to 3D atrial geometries for improved analysis and clinical
applicability. Furthermore, while surface-defined inputs
improve α predictions [5], their benefit for CV remains
to be assessed. Ultimately, FiberNet enables more pre-
cise, patient-specific characterization of anisotropic con-
duction properties from sparse data. This capability, rep-
resenting an enhancement over conventional approaches,
holds promise for improving risk stratification and guiding
personalized treatment strategies for atrial fibrillation.
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